Welcome!

This blog provides commentary on interesting geological events occurring around the world in the context of my own work. This work is, broadly, geological fluid dynamics. The events that I highlight here are those that resonate with my professional life and ideas, and my goal is to interpret them in the context of ideas I've developed in my research. The blog does not represent any particular research agenda. It is written on a personal basis and does not seek to represent the University of Illinois, where I am a professor of geology and physics. Enjoy Geology in Motion! I would be glad to be alerted to geologic events of interest to post here! I hope that this blog can provide current event materials that will make geology come alive.

Banner image is by Ludie Cochrane..

Susan Kieffer can be contacted at s1kieffer at gmail.com


Wednesday, July 31, 2013

Links between earthquakes and other geologic activity

Nature Geoscience (August volume 6(8), pp. 585-672) has a fairly long section ("a Web Focus") and a number of papers on geologic activity associated with or triggered by earthquakes. The introductory editorial reflects that in 1835 Charles Darwin voyaging on the Beagle experienced a large earthquake near Concepcion, Chile, and noted that within the hour a train of volcanoes in the Andes spouted out a dark column of smoke (though it would take a journey into Darwin's notes to determine whether he thought this was volcanic gas or perhaps debris from landslides. The implication in the editorial is that it was the former).
   
Illustration of the elastic rebound part of volcanic arc
subsidence after a megathrust earthquake
The first paper in this section (by Sigurjon Jonsson) summarizes the deflation of volcanic areas in response to the 2011 Tohoku and 2010 Maule (Chile) earthquakes. Both settings are at subduction zones (see figure), and the volcanoes that subsided were on the overriding plate. Prior to the earthquake, strain accumulates and compresses the overriding plate. During and after the earthquake, the overriding plate extends and subsides. However, subsidence beyond that which can be explained by this process is observed.
     In the case of the Tohoku earthquake, Takada and Fukushima documented 5-15 cm of subsidence at a distance of 150-200 km from the rupture earthquake, but no volcanic eruptions. They suggest that subsidence is caused by sinking of magma reservoirs and their warm host rocks through the colder surrounding crust. Prichard and colleagues noted that two earthquakes (1906, 1960) were followed by eruptions in the Andes within a year, but that no eruptions have been clearly associated with the 2010 earthquake. They were, however, able to document the 15 cm of subsidence, and suggest that hydrothermal fluids were released from hydrothermal systems surrounding the volcanoes in Chile during the 2010 quake, and that the escape of these fluids caused the volcanic areas to deflate.
     A second example of a proposed connection between earthquakes and geologic activity is more controversial: the Lusi mud volcano eruption. In 2006, mud erupted through and around a drill hole, flooding towns and displacing thousands of people.  Paul Davis summarizes a paper by Lupi et al. that proposes that the 2006 Lusi mud eruption in Indonesia (still continuing) was triggered by a M6.3 earthquake two days prior to the eruption and 275 km away.  Lupi et al. argue that strains, which are unarguably small at such a distance in homogeneous media,  were amplified by a downward concave layer of shale that acted as a parabolic reflector. Their simulations suggest that the stresses could have been about 100 kPa, five times higher than original estimates of 21 kPa. Such pressures, the assert, could have liquified the mud that resides at depth, resulting in the eruption of mud through the drill hole. This conclusion remains controversial (see discussion by R.J. Davies, et al., Earth and Planetary Science Letters, 272, 627-638, 2008).
     For a third example, Fischer et al. examine subduction zone earthquakes as triggers of submarine hydrocarbon seepage.  Offshore of Pakistan, the Arabian Plate subducts beneath the Eurasian plate. This is a region of intense seismicity, in particular a major earthquake (M8.1) occurred there in 1945. It occurred in an area where gas hydrates (methane clathrates) are present, and leakage of hydrocarbon gas is known to occur here. Methane and sulfates both occur in the ocean with sulfate being stable above about 5 mbsf, and methane at greater depths. The concentration of both goes to nearly zero at a depth known as the sulfate-methane transition (SMT). In a complicated chemical reaction, sulphate is consumed through anaerobic oxidation of methane (CH4 + SO24􏰀 ! HCO􏰀3 + HS􏰀 + H2O). Barium, being present in sea water, is precipitated at the SMT in so-called "barite fronts" and the abundance of barite can be used to reconstruct changes in upward methane flux.  The authors calculated that it would take approximately 38-91 years to produce the observed barite enrichments. This leads them to conclude that the barite production could have been initiated by the 1945 earthquake and an accompanying increase in methane flux due to release from the hydrates. If confirmed, submarine gas release triggered by earthquakes needs to be added to the list of processes that can add methane to the hydrosphere, and possibly to the atmosphere, in the carbon budget.




References: Takada, Y., and Fukushima, Y., Nature Geoscience, 6, 637-641, 2013.
Pritchard, M.E., Jay, J.A., Aron, F., Henderson, S.T., and Lara, L.E., Subsidence at southern Andes volcanoes induced by the 2010 Maule, Chile earthquake, Nature Geoscience, 6, 632-626, 2013.
Lupi, M., Saenger, E.H., Fuchs, F., and Miller, S.A., Lusi mud eruption triggered by geometric focusing of seismic waves, Nature Geoscience, 6, 642-646, 2013.
Fischer, D., et al., Subduction zone earthquake as potential trigger of submarine hydrocarbon seepage, Nature Geoscience, 6, 647-651, 2013.

No comments: