Welcome!

This blog provides commentary on interesting geological events occurring around the world in the context of my own work. This work is, broadly, geological fluid dynamics. The events that I highlight here are those that resonate with my professional life and ideas, and my goal is to interpret them in the context of ideas I've developed in my research. The blog does not represent any particular research agenda. It is written on a personal basis and does not seek to represent the University of Illinois, where I am a professor of geology and physics. Enjoy Geology in Motion! I would be glad to be alerted to geologic events of interest to post here! I hope that this blog can provide current event materials that will make geology come alive.

Banner image is by Ludie Cochrane..

Susan Kieffer can be contacted at s1kieffer at gmail.com


Friday, February 15, 2013

Meteor blast over Russia

From the electronic version of the New York Times,
February 15, 2013.

Reports from Russia today tell of hundreds of people hurt during the passage of a meteor. By coincidence or not, this has happened on the very day that a known asteroid, 2012 DA14, is to pass within 17,000 miles of the earth, a widely-publicized happening for which the public has been reassured that there is no danger of the asteroid actually hitting the earth! It will be interesting to follow the speculations: Was this meteor an undetected fragment of the bigger one (it is about 45 meters in diameter)? How big was it? The Russians have given a preliminary estimate of 20 tons. People weren’t hurt by the meteor itself, but by a “blast” from its passage.

What was the “blast?” When an object such as your car, or a bullet, or a meteor, moves through air, a signal also moves through the air “alerting” the air around the object that something is moving. The effect is analogous to ripples spreading away from a pebble dropped in a pond, but this signal is an acoustic wave, just like the waves that carry the sound of your voice across a room. At low velocities, the effect is barely noticeable and the air adjusts to the incoming object by moving away. However, when the object is moving “fast,” the air near the object can’t “get out of the way.” The compression waves emanating from the object pile up through nonlinear effects and form a shock wave.

Pressure, temperature and density all rise across a shock.  When the overpressure is only 1.5-2 pounds per square inch (psi), the effect is annoying; when it is 2-10 psi (about one-tenth of normal atmospheric pressure at sea level), minor structural damage can occur. Sonic booms generate pressures on the order of 20-150 psi (up to about 10 times normal atmospheric pressure) and humans have survived these without injury. Ear damage occurs when the overpressures are over 700 psi (about 50 times atmospheric pressure), and lung damage occurs at about 2000 psi (about 140 times atmospheric pressure). Presumably the pressures from the shock of this meteor were on the order of a few hundred psi when it the ground and broke the windows. It was glass from the broken windows that caused most of the injuries.

How fast is “fast”? This is determined by the speed with which sound propagates through air, about 330 meters per second, about 740 miles per hour. Typical impact velocities for asteroids are 17 km/second and for comets, 51 km/second, much higher than the speed of sound in air. This is the reason that all meteors, if they are big enough, generate sonic booms.

According to the New York Times, the Russians deployed seven airplanes to search for meteorite fragments. More than 20,000 people were sent to search the area on foot for fragments.  An impact crater has been reported on the outskirts of a city “50 miles west of Chelyabinsk,” an area of many military industrial complexes. Since the Cold War days, it has been a concern that an event like this could be mistaken by nervous governments for a bomb attack. If this had happened a few decades ago, the Russian response might have been different, and if it happened over North Korea or Iran in the middle of the night when the contrail in the sky couldn’t be seen, one has to wonder what might have happened. Scary thought…

Sunday, February 3, 2013

Water jetpacks, Saturn V rockets, and Mount St. Helens


A short article in the January issue of Physics Today examined the physics of water jetpacks (reference below), a physics that I applied to the 1980 lateral blast at Mount St. Helens—a scaled-up version of a jetpack!
            A water jetpack is a device that provides a platform for a person to stand on. It ejects water at high velocity to propel the person upward, for example the Mississippi River celeb Caleb Gavic pictured above hovering over the Mississippi River.  Note, from the sketch in the picture that a fire hose feeds the jet pack, and that there are two major thrusters and two handheld stabilizing nozzles through which water is expelled to provide the thrust to the platform. The nozzles have a slightly smaller area (combined) than the hose that feeds the system.
            Vonk and Bohacek examine a number of scenarios for the physics of this machine, starting with a one-dimensional, steady state model in which they ask simply "how much thrust does it take to support the weight of the pilot and his platform?" That weight for Gavic and his platform is 10 Newtons (N). Using F=dp/dt (F=force=thrust, p=pressure, t=time)--Newton’s second law--this force must be equal to the change in momentum per unit time of the water stream at the platform. The change of momentum is proportional to the difference (per unit time) between the velocity of the water approaching the platform (v1) and the water being expelled at the platform (v2). That is, F = (dm/dt)(v2-v1).
            From conservation of energy, the mass change, dm/dt, is dm/dt=rho*v2*(2At+TAs), where rho is the density of the water, and At and As are, respectively the cross-sectional areas of the thrusters and the stabilizers. Assuming no loss of water (i.e., no leaks), this must be equal to the mass (or volume since this is incompressible flow) of water approaching through the hose. Setting these two quantities equal to each other, and manipulating, gives v1=-v2(2At + 2As)/Ah, where Ah is the cross-sectional area of the feeding hose. The minus sign arises because the approach and exit velocities are approximately in opposite directions. 
           When substituted into the equation for force (above), this yields an expression too cumbersome to type on a blog, but a relatively simple expression for the force that depends on five quantities: rho, v1, At, As, Ah. Plugging in the known values and solving for the velocity of the water ejected by the thrusters, v2, they calculated a velocity of 10 m/s, about 23 mph.
            When compared to a velocity that they could estimate from tracking knots of water in a video of the jetpack, they found that the actual speed was 15 m/s, in the ballpark of the 23 mph calculated but only in the ballpark. To get a more accurate answer, they refined the model to take account of the fact that the hose is pulled down by gravity with a force equal to its weight and the water within it, and the fact that there is tension in the hose. They also considered that there is a deflection of the thrusters in the horizontal direction (see photo). With these refinements, they got the model to be within about 15% of the measured quantities. Estimates of the ejected water speed range between roughly 10 and 20 m/s with the different models.The thrust is in the range of 1660 N.   
              For comparison, one of the most impressive displays of power created by humans was the launching of a Saturn 5 rocket that carried Apollo astronauts to the moon. The first stage of the Advanced Saturn 5 consisted of five F-1 liquid-oxygen/kerosene motors. The thrust of the Saturn 5 rockets that propelled Americans to the moon was 7.5 million pounds (3.3 x 10^7  N), about 20,000 times as great as the water jetpacks!
In 1980 when I worked at Mount St. Helens after the lateral blast of May 18, I proposed that the blast resembled the discharge of a giant rocket nozzle, where the "propellent" was the hot gas inside the volcano that was released when exposed by a giant landslide. An area of over 500 square kilometers (the white area in the sketch) was decimated. I calculated the thrust using the same principles as above for the water jetpack (reference is Kieffer below). Two factors contributed to the thrust of the blast being much larger than that of either the jetpacks or the Saturn V: the enormous area of the vent and the heavy mass loading of the gas.
The mass flux area at the exit of an F-1 motor was about 25 g/s/cm^2; that of the lateral blast at the Mount St. Helens vent was 240 times as great (these calculations are in the Kieffer reference below). The power per unit area of the F-l motors was approximately 0.8 Mwatt/cm^2; that of the lateral blast was three times greater. The Saturn 5 power was delivered over five rockets covering roughly 50 m^2; the blast at Mount St. Helens flowed out of a vent more than 2,000 times this area. The total power of the five Saturn 5 motors was about 4 x 10^5 megawatts; that of the blast was nearly 16,000 times as great. The thrust of the Saturn 5 was 7.5 million pounds (3.3 x 10^7  N); that of the blast was 10^5 greater. (This calculated number was almost identical to the thrust estimated from seismic measurements of the blast, see Kanamori and Given reference below.) 
The lateral blast of May 18 was indeed an awesome event by both human and geologic standards, and certainly dwarfed that of the water jet pack!
Vonk, Matthew and Bohacek, Peter, “Carried by Impulse: The physics of water jetpacks,” Physics Today, p. 54-55, January 2013)
Kieffer, S. W., "The blast at Mount St. Helens: what happened?" Engineering and Science, 45(1), 6-12, 1981. 
Kanamori, Hiroo and Given, Jeffrey W., "Analysis of long-period seismic waves excited by the May 18, 1980, eruption of Mount St. Helens-a terrestrial monopole?" Journal of Geophysical Research, 87(B7), 5422-5432, 1982.